# If X:Y = 2:3, Y:Z = 4:5. Find X:Y:Z.

A. 2:3:5

**B. 8:12:15**

C. 2:8:5

D. 2:7:5

If A:B = m1:n1 ; B:C = m2:n2

Then, A:B:C = (m1*m2):(n1*m2):(n1*n2)

Therefore, X:Y:Z = (2*4):(3*4):(3*5)

= 8:12:15

The Mcq If X:Y = 2:3, Y:Z = 4:5. Find X:Y:Z.

A. 2:3:5

**B. 8:12:15**

C. 2:8:5

D. 2:7:5

If A:B = m1:n1 ; B:C = m2:n2

Then, A:B:C = (m1*m2):(n1*m2):(n1*n2)

Therefore, X:Y:Z = (2*4):(3*4):(3*5)

= 8:12:15

The Mcq If X:Y = 2:3, Y:Z = 4:5. Find X:Y:Z.

A. 9

**B. 15**

C. 25

D. 50

5:x::x:45 x²=45*5 = 225 x=15

The Mcq Find the mean proportion between 5 and 45.

**A. 2**

B. 3

C. 5

D. 6

X:Y:Z=2:3:4

X=4

Then, Y=6, Z=8 XY=kZ 4*6=k*8 8k=24 k=3

Y=12, Z=8

X*12=3*8

X=2

The Mcq Three quantities X, Y and Z are such that XY=kZ where k is constant. Initially, X was at 4 and X:Y:Z was 2:3:4. If the value of Y is changed to 12 and Z is kept constant, find the value of X.

A. 160

B. 200

C. 250

**D. 240**

Let the number of 50p, 1 rupee and 2 rupee coins be 2x,5x and 8x. 0.5*(2x)+5x+2*8x = 352 22x=352 x=16 Total no. of coins

= 2x+5x+8x

= 15x = 240

The Mcq A bag contains 50 paise, 1 rupee and 2 rupee coins in the ratio 2:5:8. If the total amount is Rs. 352, find the total number of coins in the bag.

**A. 8:15:30**

B. 5:18:28

C. 4:5:6

D. 2:3:5

P1:P2:P3 = (2*4):(3*5):(5*6)

= 8 : 15 : 30